
12 Issue Nr 5 2015 BLAISE PASCAL MAGAZINE

In the previous 2 articles, we introduced Visuino – a
new graphical development environment for Arduino,
and we demonstrated how you can use Delphi and
the upcoming CommunicationLab from Mitov
Software to communicate with Arduino, and get the
data from its sensors into your applications.
It surely is a lot of fun to use Visuino and Delphi to
talk to Arduino, but it would be even bigger fun to be
able to create your own components for Visuino and
use them in your projects or share them with other
developers, the same way as you do in Delphi.
 When I started developing Visuino, one of my
early goals was to develop it as open and expandable
platform. Since the underlying OpenWire Studio
already was developed around the concept of
installable components, and packages, Visuino
inherited this architecture.
 From the beginning, all components in Visuino
were parts of installable packages, and new
components could be added, by simply installing new
packages similar way as new components can be
installed in Delphi.
As Visuino approached its release version, I also
developed and released a Beta of the Visuino
Components development SDK. The SDK is available
for download from the Visuino Google+ community -
https://plus.google.com/
communities/116125623808250792822.

In this article you will learn how you can develop your
own components for Visuino.

BY BOIAN MITOV

 Before you start developing Visuino components,
you will need to install Visuino and the Visuino
components development SDK.
The SDK currently requires Delphi XE8 to be
used for the component development.
The typical Visuino installation will place the
executable under C:\Program
Files\Mitov\Visuino or C:\Program Files

(x86)\Mitov\Visuino, depending on the
version of Windows you use.
 The Visuino directory will contain the
executable Visuino.exe . There is also a Demos
sub-directory. There is another typically empty
directory called “Component Packages”.

This is the directory where additional component
packages can be installed.In addition to this folder
structure, Visuino also instals C++ Arduino files into
“Mitov” sub-directory of the Arduino library folder.
Typically the Arduino libraries folder is
“My Documents\Arduino\libraries”.

Each Visuino component consists of 2 parts.
The Arduino C++ code in the
“libraries\Mitov” directory,

or another “libraries*” sub-directory,

and a corresponding Delphi component in a
package in the “Component Packages”

directory.

ARDUINO: THE VISUINO PROJECT - PART 3 PAGE - 1/16
CREATE YOUR OWN COMPONENTS FOR VISUINO

START DEVELOPING VISUINO COMPONENTS

The C++ code is the one that compiles and
executes in Arduino. The Delphi component is
almost just an empty shell, that has some
attributes needed to describe the capabilities of
the C++ code. From that point of view, in most
cases the Delphi code is just a simple description
of the component. In some cases however, some
more complex code generation logic can be
implemented in the Delphi component, to control
the way the Arduino code is generated.

The Components SDK after installation, creates
its own folder structure. Currently, the typical
installation will create “OpenWire” and “LabPacks”
sub-folders under the Delphi main folder.
In the “LabPacks\Mitov\Arduino\Examples”

folder, there is an example of component package
for Visuino.

In the C:\Program Files
“LabPacks\Mitov\Arduino\

Examples\library” folder is where the C++
code for Arduino is located.

In the “LabPacks\Mitov\Arduino\
Examples\XE8” folder, is the
VisuinoExampleProjectGroup.groupproj

project group, containing the projects for the
example Visuino package.

If you open the project group, you will discover
that it contains 2 projects.

Visuino.ExamplePackage.dproj

and
Visuino.ExamplePackage.Design.dproj.

Visuino.ExamplePackage.dproj contains the
demo components, and the
Visuino.ExamplePackage.Design.dproj

contains the component registration code.

13Issue Nr 5 2015 BLAISE PASCAL MAGAZINE

ARDUINO: THE VISUINO PROJECT - PART 3 PAGE - 2/16
CREATE YOUR OWN COMPONENTS FOR VISUINO

After compiling the project group, in the
“LabPacks\Mitov\Arduino\Examples\XE8\Win32\Debug” will contain the compiled packages. To
install the example components package, you can copy the *.bpl files into the “Component Packages”
directory of Visuino.
If you run Visuino, you will see that a new “Quadratic Function Example” component is available:

You can compile the project group,
by selecting |Project|Build All Projects| .

614 Issue Nr 4 2015 BLAISE PASCAL MAGAZINE

The reason is that the Arduino IDE
can't find the
“Visuino_Example_Quadratic.h”
file. To make it available to the IDE,
you need to copy the file from
“LabPacks\Mitov\Arduino\

Examples\library” to a sub-

directory of
“MyDocuments\Arduino\

libraries”. You can create a

directory called
“VisuinoExample” - “My
Documents\Arduino\librar

ies\VisuinoExample” and

copy the file there. To make the
Arduino IDE discover the directory,
you will need to close and restart it.
The easiest way is by again
pressing the F9 in Visuino after
closing the Arduino IDE.

ARDUINO: THE VISUINO PROJECT - PART 3 PAGE - 3/16
CREATE YOUR OWN COMPONENTS FOR VISUINO

If you try to compile the code in the Arduino IDE,
you will receive the error:

If you press F9 in Visuino, it will generate the Arduino code.

15Issue Nr 5 2015 BLAISE PASCAL MAGAZINE

Now after you have learned
how to compile and deploy
the example packages and
components from the Visuino
components SDK, it is time to
learn how to create packages
and components from
scratch.

Start by creating a new Delphi
package:

Save the package as Visuino.MyVisuinoPackage.

ARDUINO: THE VISUINO PROJECT - PART 3 PAGE - 4/16
CREATE YOUR OWN COMPONENTS FOR VISUINO

THIS TIME IF YOU TRY TO COMPILE THE CODE, THERE WILL BE NO ERRORS:

16 Issue Nr 5 2015 BLAISE PASCAL MAGAZINE

ARDUINO: THE VISUINO PROJECT - PART 3 PAGE - 5/16
CREATE YOUR OWN COMPONENTS FOR VISUINO

Save this one as Visuino.MyVisuinoPackage.Design.
Save the project group as MyVisuinoProjectGroup

Add a second Delphi package to the project group:

17Issue Nr 5 2015 BLAISE PASCAL MAGAZINE

Open the project options for the Visuino.MyVisuinoPackage, select as Target “All configurations”.
In the Description settings page, type a description – as example “My Visuino Package”, and set the
package to be “Runtime only”:

In the “Delphi Compiler” page set: “DCP output directory” and “Package output

directory” to : .\$(Platform)\$(Config)

And the “Search Path” to:
.\$(Platform)\$(Config);$(BDS)\LabPacks\Mitov;$(BDS)\LabPacks\Mitov\Arduino;
$(BDS)\LabPacks\Mitov\XE8\$(Platform)\$(Config);$(BDS)\LabPacks\Mitov\Arduino\XE8\$(Plat
form)\$(Config)

ARDUINO: THE VISUINO PROJECT - PART 3 PAGE - 6/16
CREATE YOUR OWN COMPONENTS FOR VISUINO

18 Issue Nr 5 2015 BLAISE PASCAL MAGAZINE

ARDUINO: THE VISUINO PROJECT - PART 3 PAGE - 7/16
CREATE YOUR OWN COMPONENTS FOR VISUINO

Right-click on the Visuino.MyVisuinoPackage, and select “View Source”.

Do the same settings for the Visuino.MyVisuinoPackage.Design.
You should set a different description, as example “My Visuino
Design Package” :

ARDUINO: THE VISUINO PROJECT - PART 3 PAGE - 8/16
CREATE YOUR OWN COMPONENTS FOR VISUINO

19Issue Nr 5 2015 BLAISE PASCAL MAGAZINE

Do the same for the Visuino.MyVisuinoPackage.Design,
however this time add to the “requires” section:

requires
 rtl,
 vcl,
 OpenWirePkgDXE8,
 Mitov_Runtime_DXE8,
 OpenWireBindingPkgDXE8,
 SignalLabBasicPkgDXE8,
 CommunicationLabBasicPkgDXE8,
 Mitov.Embedded.Arduino.Basic.DXE8,
 Visuino.MyVisuinoPackage;

Now that you have your packages ready, you can start
working on your component. You will add component
almost identical to the one in the included example, so
you can also copy and paste some of the code from
there.
Add new unit to the Visuino.MyVisuinoPackage:

Add the following packages in the
“requires” section:

requires
 rtl,
 vcl,
 OpenWirePkgDXE8,
 Mitov_Runtime_DXE8,
 OpenWireBindingPkgDXE8,
 SignalLabBasicPkgDXE8,
 CommunicationLabBasicPkgDXE8,
 Embedded.Arduino.Basic.DXE8;

Save the new unit as Visuino.MyComponent.
In the unit add:

ARDUINO: THE VISUINO PROJECT - PART 3 PAGE - 9/16
CREATE YOUR OWN COMPONENTS FOR VISUINO

Add a unit to the
Visuino.MyVisuinoPackage.Design,

and save it as Visuino.MyPackage.Register. In
this unit add:

unit Register . . ;Visuino MyPackage

interface

procedure Register ();

implementation

uses Visuino MyComponent. ;

procedure Register ();
begin
 . . ();Visuino MyComponent RegisterPkg
end;

end.

When Visuino loads the
Visuino.MyVisuinoPackage.Design

package it will call the Register() method.
The Register method will call
Visuino.MyComponent.RegisterPkg();

RegisterPkg(); will call the

RegisterComponents, and will pass array of

components to be registered in the Visuino
toolbar. If you install the packages in Visuino and
run it. You will see that our new component is
available:

unit . ;Visuino MyComponent

interface

uses
 System Classes Mitov Design Components. , . . ,
 Mitov Arduino Types. . ;

type
 = TVisuinoMyComponent
 class()TArduinoCommonAnalogFilter
 ;end

procedure ();RegisterPkg

implementation

procedure ();RegisterPkg
begin
 (RegisterComponents
 [
 TVisuinoMyComponent
]
);
end;

end.

20 Issue Nr 5 2015 BLAISE PASCAL MAGAZINE

The component however is not registered in any
categories, does not have image, and does not
have user friendly name. Lets start fixing this.
Add Mitov.Arduino.Categories.Basic

to the uses clause, and [Category(
 TArduinoMathFilterToolbarCategory)]
attribute to the component:

This will place the component in the
Arduino/Filters/Math subcategory,
and the associated alternative categories.

To add the desired user friendly names,
add Mitov.Attributes to the uses, and
[CreateName('MyVisuinoComponent')],

and
[Name('My First Visuino Component'

)]

attributes to the component:

You can also add image for the component.
To do that, you need to create an empty
Visuino.MyComponent.res resource file, and add
32x32 pixels PNG image as resource named
“TVISUINOMYCOMPONENT” - upper case of our

component name as declared in the code. I usually
use Visual Studio to create and edit the resource
files, but you can use any other resource editor.

ARDUINO: THE VISUINO PROJECT - PART 3 PAGE 10/16
CREATE YOUR OWN COMPONENTS FOR VISUINO

uses
 . , . . , System Classes Mitov Design Components

. . , Mitov Arduino Types

 . . . ;Mitov Arduino Categories Basic

type
 [()]Category TArduinoMathFilterToolbarCategory

 = TVisuinoMyComponent

 class()TArduinoCommonAnalogFilter

 ;end

System Classes Mitov Design Components. , . . ,
Mitov Arduino Types. . ,
Mitov Arduino Categories Basic. . . ,
Mitov Attributes. ;

type
 [()]Category TArduinoMathFilterToolbarCategory
 [()]CreateName 'MyVisuinoComponent'
 [()]Name 'My First Visuino Component'
 = TVisuinoMyComponent
 class() TArduinoCommonAnalogFilter
 ;end

21Issue Nr 5 2015 BLAISE PASCAL MAGAZINE

 You can also open and explore the
“Visuino.QuadraticFunctionExample.res”
included in the SDK example.
To use the resource in the component, add:

unit . ;Visuino MyComponent

{$R *.res}

to the Visuino.MyComponent.pas file.

Now if you rebuild, and deploy the package and
run Visuino, you will see that the
component has the new names and image,
and appears in the right categories:

I mentioned earlier that each Visuino component
has 2 parts. The Arduino C++ code, and its visual
representation in Visuino. So far you have created
a visual representation of such Arduino
component. Now lets write the C++ code.
Under “Arduino\libraries” create “MyExample”
folder:
“My documents\Arduino\libraries\MyExample”.
In this folder create a new .h file
Visuino_MyComponent.h, and open the file to edit
it as example in RAD Studio, Visual Studio,
Notepad or other editor, and write the minimal
code necessary:

#ifndef _VISUINO_MY_COMPONENT_h
#define _VISUINO_MY_COMPONENT_h

#include Mitov h < . >

#endif

This is just the code to have an empty header file
that has define preventing it from being included
multiple times, and includes the Mitov.h header
file that contains the Visuino base classes.
Next you will create a namespace where you can
put our component. This step is not really
required, but is highly recommended to avoid
conflicts of multiple components from multiple
vendors with the same name. Use your own name,
or company name for the namespace, or
something else that is likely to be unique.

ARDUINO: THE VISUINO PROJECT - PART 3 PAGE 11/16
CREATE YOUR OWN COMPONENTS FOR VISUINO

namespace MyVisuinoComponents
{
 class MyComponent Mitov CommonEnableFilter public : ::
 {
 typedef inherited;Mitov CommonEnableFilter::
 };
}

#ifndef _VISUINO_MY_COMPONENT_h
#define _VISUINO_MY_COMPONENT_h

#include Mitov h < . >

namespace MyVisuinoComponents
{
}

#endif

In the namespace now you can declare your
component:

Issue Nr 5 2015 BLAISE PASCAL MAGAZINE22

Now that you have a rudimentary Visuino
component that you can test, go back to the
Delphi code, and instruct it how to generate code
for the component.
First you need to specify the header file that
needs to be included in the Arduino project when
you use the component. In this case
Visuino_MyComponent.h. You can do this by

adding [ArduinoInclude(

'Visuino_MyComponent')] attribute.

Second you need to specify the namespace and
the name of the C++ component. You can do this
by adding [ArduinoComponent(
'MyVisuinoComponents::MyComponent'

)] attribute:

This is enough to generate the proper code for
Arduino, however the MyComponent inherits
from Mitov::CommonEnableFilter which
contains abstract method virtual void
DoReceive(void *_Data).

You need to implement this method in your C++

code, and this is where our data processing will be
done. For now you can just do nothing with the
data, and send it to the output of the filter without
a change:

ARDUINO: THE VISUINO PROJECT - PART 3 PAGE 12/16
CREATE YOUR OWN COMPONENTS FOR VISUINO

class MyComponent : public Mitov::CommonEnableFilter
 {
 typedef Mitov::CommonEnableFilter inherited;

 protected:
 virtual void DoReceive(void *_Data)
 {
 OutputPin.Notify(_Data);
 }

 };

type
 [()]ArduinoInclude 'Visuino_MyComponent'

 [()]Category TArduinoMathFilterToolbarCategory
 [()]ArduinoComponent 'MyVisuinoComponents::MyComponent'
 [()]CreateName 'MyVisuinoComponent'

 [()]Name 'My First Visuino Component'

 = (TVisuinoMyComponent TArduinoCommonAnalogFilterclass

)
 ;end

DoReceive receives a pointer to the data,
and it just calls OutputPin.Notify passing
the same pointer to the data to be sent to
the next filter in the chain. If you generate
 the code, and compile it in
 the Arduino IDE, it will
 succeed: see figure at left.

Your first component is
done, but it does not do
much.
To be useful it needs to
perform some processing
over the data.
Now you will implement
the same quadratic function
as implemented in the
SDK's example,
but you can easily
implement on your own
any other function you can
think of.

23Issue Nr 5 2015 BLAISE PASCAL MAGAZINE

For the quadratic function you will need 3 properties containing the 3 coefficients A, B and C.
So lets declare them in the C++ code first:

Next, you need to initialize them with their default values in the constructor:

Finally you need to implement the proper computation in the DoReceive:

In this case if the component is Enabled it will obtain the floating point value from the _Data pointer,
use it for the calculation, and then send the result trough the OutputPin .
If the component is not Enabled it will just send the data trough the OutputPin without changes.
The C++ code for the component is ready. Now lets add the properties in the Delphi code.

ARDUINO: THE VISUINO PROJECT - PART 3 PAGE 13/16
CREATE YOUR OWN COMPONENTS FOR VISUINO

class public : ::MyComponent Mitov CommonEnableFilter

 {
 typedef Mitov CommonEnableFilter inherited;::
public:
 float A,B,C;

class public : ::MyComponent Mitov CommonEnableFilter
 {
 typedef Mitov::CommonEnableFilter inherited;

 public:
 float A,B,C;

 protected:
 virtual void DoReceive(void *_Data)
 {
 OutputPin.Notify(_Data);
 }
 :public
 () :MyComponent
 (), (), ()A B C1.0 2.0 3.0
 {
 }
 };

protected:
 (*_)virtual void DoReceive void Data
 {
 if(Enabled)
 {
 float AValue = *(float *)_Data;
 AValue = AValue * AValue * A + AValue * B + C;
 OutputPin.Notify(&AValue);
 }

 else
 . (_);OutputPin Notify Data

First you need to declare the 3 fields that will hold the properties:

Next you need to declare the 3 properties, and specify the default values. The Visuino
component framework will initialize the fields automatically with the default values:

TVisuinoMyComponent TArduinoCommonAnalogFilter = ()class
 protected
 : ; : ; : ;FA Single FB Single FC Single

 ;end

Issue Nr 5 2015 BLAISE PASCAL MAGAZINE24

Your component is ready to
be used. If you deploy the
compiled *.bpl files
to the “Component
Packages” sub-directory of
Visuino, and run Visuino,
you will have the
properties available, and
you can edit them:

ARDUINO: THE VISUINO PROJECT - PART 3 PAGE 14/16
CREATE YOUR OWN COMPONENTS FOR VISUINO

TVisuinoMyComponent TArduinoCommonAnalogFilter = ()class
 protected
 : ; : ; : ;FA Single FB Single FC Single

 published
 [()]DefaultSingle 1.0
 : ;property read writeA Single FA FA

 [()]DefaultSingle 2.0
 : ;property read writeB Single FB FB

 [()]DefaultSingle 3.0
 : ;property read writeC Single FC FC

 ;end

25Issue Nr 5 2015 BLAISE PASCAL MAGAZINE

Here is example Visuino connection diagram that you can use to test the new component:

ARDUINO: THE VISUINO PROJECT - PART 3 PAGE 15/16
CREATE YOUR OWN COMPONENTS FOR VISUINO

Your component is ready, tested and operational.
There are some final improvements that you can do. At the moment the end user of the component can
set any value for the A, B and C parameters. Sometimes you want to limit that range. You can limit the
range of a property by adding the ValueRange attribute, as example like this:

 [DefaultSingle(3.0)]
 [ValueRange(-1000, 1000)]
 property C : Single read FC write FC;

You can also add a suggested smaller range that will be used in the Visuino property editor when
showing the in-place track-bar value editor, by using the DesignRange attribute like this:

 [DefaultSingle(3.0)]
 [DesignRange(-100, 100)]
 [ValueRange(-1000, 1000)]
 property C : Single read FC write FC;

If you add those attributes, rebuild and deploy the package,
in Visuino the in-place editor will offer only the -100 to 100 range:

Issue Nr 5 2015 BLAISE PASCAL MAGAZINE26

If you compile and upload the Arduino code as described in the previous
articles, and then connect to it with Visuino, you will see the sine wave
deformed by the quadratic function plotted in the scope:

If you compile and upload the Arduino code as described in the
previous articles, and then connect to it with Visuino, you will see the
sine wave deformed by the quadratic function plotted in the scope:

ARDUINO: THE VISUINO PROJECT - PART 3 PAGE 16/16
CREATE YOUR OWN COMPONENTS FOR VISUINO

CONCLUSION
In this article you learned the basics of
creating your own Visuino components. As you
have seen, it is very easy, and can be done by
almost anyone, even with limited programming
knowledge.
The component we demonstrated is very
simple, and yet already very useful. With the
component SDK you can create much more
complex and advanced components, with many
more features. All components included in
Visuino are written using this SDK, and you can
see the power they offer. It is not possible in a
single article to cover all aspects of Visuino
component development, but this is a very
good starting point.

Any attempt to also enter manually value outside
the -1000 to 1000 range will fail.
If the DesignRange attribute is not present, and
ValueRange is present, the track-bar will use the
ValueRange instead. If none of them is present,
the track-bar will offer the full range of floating
point values.

We are working hard to provide more resources
and information on Visuino component
development, and I hope you all will have many
joyful hours playing with Visuino and creating
your own components for it.
In the next Visuino article we will show you how
you can connect Delphi applications and Arduino
boards over internet, and how you can make
different Arduino boards talk to each other. You
will be entering the exciting world of “Internet
of Things”!

	FPC3:
	Delph to Delphi:
	Pythagoras:
	Fastreport:
	Remote Desktop:
	Barnsten:
	URL:

