ARDUINO: T
CREATE YOU

BY BOIAN MITOV

In the previous 2 articles, we introduced Visuino - a
new graphical development environment for Arduino,
and we demonstrated how you can use Delphi and
the upcoming CommunicationLab from Mitov
Software to communicate with Arduino, and get the
data from its sensors into your applications.

It surely is a lot of fun to use Visuino and Delphi to
talk to Arduino, but it would be even bigger fun to be
able to create your own components for Visuino and
use them in your projects or share them with other
developers, the same way as you do in Delphi.

When I started developing Visuino, one of my
early goals was to develop it as open and expandable
platform. Since the underlying OpenWire Studio
already was developed around the concept of
installable components, and packages, Visuino
inherited this architecture.

From the beginning, all components in Visuino
were parts of installable packages, and new
components could be added, by simply installing new
packages similar way as new components can be
installed in Delphi.

As Visuino approached its release version, I also
developed and released a Beta of the Visuino
Components development SDK. The SDK is available
for download from the Visuino Google+ community -
https://plus.google.com/
communities/116125623808250792822.

In this article you will learn how you can develop your
own components for Visuino.

START DEVELOPING VISUINO COMPONENTS
Before you start developing Visuino components,

you will need to install Visuino and the Visuino
components development SDK.

The SDK currently requires Delphi XE8 to be
used for the component development.

The typical Visuino installation will place the

executable under c:\Program
Files\Mitov\Visuino or C:\Program Files

(x86) \Mitov\Visuino, depending on the
version of Windows you use.

The Visuino directory will contain the
executable Visuino.exe . There is also a Demos
sub-directory. There is another typically empty
directory called *Component Packages”.
This is the directory where additional component

packages can be installed.In addition to this folder
structure, Visuino also instals C++ Arduino files into
“Mitov” sub-directory of the Arduino library folder.
Typically the Arduino libraries folder is

“My Documents\Arduino\libraries”.
Each Visuino component consists of 2 parts.

The Arduino C++ code in the

“libraries\Mitov” directory,

or another “libraries*” sub-directory,
and a corresponding Delphi component in a
package in the “Component Packages”

ECT - PART 3 PAGE - 1/16
NTS FOR VISUINO

The C++ code is the one that compiles and
executes in Arduino. The Delphi component is
almost just an empty shell, that has some
attributes needed to describe the capabilities of
the C++ code. From that point of view, in most
cases the Delphi code is just a simple description
of the component. In some cases however, some
more complex code generation logic can be
implemented in the Delphi component, to control
the way the Arduino code is generated.

The Components SDK after installation, creates
its own folder structure. Currently, the typical
installation will create “OpenWire” and “LabPacks”
sub-folders under the Delphi main folder.

In the “LabPacks\Mitov\Arduino\Examples”
folder, there is an example of component package
for Visuino.

IntheC:\Program Files
“LabPacks\Mitov\Arduino\

Examples\library” folder is where the C++
code for Arduino is located.

In the “LabPacks\Mitov\Arduino\

Examples\XE8” folder, is the
VisuinoExampleProjectGroup.groupproj

project group, containing the projects for the
example Visuino package.

If you open the project group, you will discover
that it contains 2 projects.

Visuino.ExamplePackage.dproj

and
Visuino.ExamplePackage.Design.dproj.

Visuino.ExamplePackage.dproj contains the

demo components, and the
Visuino.ExamplePackage.Design.dproj

contains the component registration code.

Issue Nr 5 2015 BLAISE PASCAL MAGAZINE

Q'O
VISLIND

o XEB - Visuino,QuadraticFunctionkExample | |

File Edit Zearch Wisw FRefactor |Project| Bun Component Tools Castalis Window Help Coefault Lzoout -

aticFunctionExample Jisuino Exa

Fl: Delphi Projects -

Delphi Projects | Delphi Files
Cther Files
Phoii: C+ +Builder Projects | C++Builder Files

Unit Test

You can compile the project group, -vice Projects
by selecting |Project|Build All Projects]| .
C++Builder Projects | Multi-Device Projects
Web Documents
C++Builder Projects | EMS

Delphi Projects | EMS

Custom Build Teo - C++Builder Projects | IntraWeh

Delphi Projects | IntraWeb
210 31 Insert Codle | Histaor C++Builder Projects | DUnitX -

2 | || | e [E O e

After compiling the project group, in the

“LabPacks\ Mitov\ Arduino\ Examples\ XE8\ Win32\ Debug” will contain the compiled packages. To
install the example components package, you can copy the *.bpl files into the “Component Packages”
directory of Visuino.

If you run Visuino, you will see that a new “Quadratic Function Example” component is available:

File Edit A Help

- L uadrancruncoon i

) In Out

Issue Nr 5 2015 13

E-3/16 bvd.-)

ARDUINO: T
VISUIND

CREATE YOU

If you press F9 in Visuino, it will generate the Arduino code.

The reason is that the Arduino IDE
can't find the
“Visuino_Example_Quadratic.h”

file. To make it avaﬂab}e to the IDE, d B If you try to compile the code in the Arduino IDE,
you need to copy the file from you will receive the error:
“LabPacks\Mitov\Arduino\ inelvds

Examples\library” toasub-

directory of
“MyDocuments\Arduino\
libraries”. You cancreatea
directory called
“VisuinoExample” - "My
Documents\Arduino\librar
ieS\VisuinoExample" and VizguincExewplss wedraticiunctionExame] uedraziciunction

copy the file there. To make the -
Arduino IDE discover the directory,

you will need to close and restart it. i
The easiest way is by again Ho such file or directory
pressing the F9 in Visuino after compilation terminated.
closing the Arduino IDE. Error compiling.

Issue Nr 4 2015 BLAISE PASCAL MAGAZINE

ARDUINO: T
CREATE YOU

Done campiling.

Global wvariables nse 188 bytes ([9%) of dynamic memnry, leaving
1,860 bytes for local wariables. Maximmm is 2,048 bytes.

digw Refactor Project Run Component Tools Castalia window Help

File | Edit

e [g
----- ' D Aulti-Device Form - Delph
-{\ Unit - Delph — 5
Tooe it f . |
i
:D_ Lo - = l
) | |

Issue Nr 5 2015 B

)

VISUINO

Now after you have learned
how to compile and deploy
the example packages and
components from the Visuino
components SDK, it is time to
learn how to create packages
and components from
scratch.

Start by creating a new Delphi
package:

- cliide | [__]I e el alroLp
1= =Bl Bl Save the package as Visuino.MyVisuinoPackage.

Delphi Projects

Delphi Projects | Delphi Files

Other Files

C++Builder Projects | C++Builder Files
Unit Test

Delphi Projects | Multi-Device Projects
C++Builder Projects

o Ruildar Draiaste | Mnlti _Navica Drsiamte

15

Q)
VISUIND

Help Default Layout

Edit = (I wefactor Project Run Component

File
= - - - B =Es Z-bit windows v M
Structure &Y welcome Page Visuino MyVisuinoPackage
- - - - -
= i
File
L s Adld Mew Pray
: B Zcld Existing Pr
T gl
< Group 23.
Fi

Zdd to version Control

slviee Dats Eoplorer Ruli-Ceoice Pro

! Delphi Projects
 Delphi Projects | Delphi Files

 QOther Files

©Unit Test
) TELi | " Delphi Projacts | Multi-Device Projects
- ! C+-+Builder Projects
24 Insert de | Histor, i €. <Ruildar Drmiarte | Multi.Navics Draiarte -

Save this one as Visuino.MyVisuinoPackage.Design.
Save the project group as MyVisuinoProjectGroup

CAL MAGAZINE

ARDUINO:
CREATE YO

- 6/16 bvd.')

VISUINO

Open the project options for the Visuino.MyVisuinoPackage, select as Target “ All configurations”

In the Description settings page, type a description - as example “My Visuino Package”, and set the
package to be “Runtime only”:

In the “Delphi Compiler” page set: “"DCP output directory” and “Package output
directory” to:.\$(Platform)\$(Config)

And the “Search Path” to:

\$(Platform)\$(Config);$(BDS)\ LabPacks\Mitov;$(BDS)\ LabPacks\Mitov\ Arduino;
$(BDS)\LabPacks\Mitov\ XE8\ $(Platform)\$(Config);$(BDS)\ LabPacks\Mitov\ Arduino\ XE8\ $(Plat
form)\$(Config)

Issue Nr 5 20

17

)

VISUIND

Targe configurs Loz - Ao Save...
a7
=1 O Rebuild 25 needed
- Explicit rebuild

v
i

Do the same settings for the Visuino.MyVisuinoPackage.Design.
You should set a different description, as example "My Visuino
Design Package” : o Cancs Help

3 - Visuinah

_ompile I—|
Fun Component T Castalia window Help Cefsult Layout - Euild I

Clean

From Here 4

Structure

Fun
ign; - Fun without Debugging

Euild Sooper Ctri+Up

File Euilal Later Ctrl+ Down
rAisUinoPraol

Shaw in Ezplaorer

ference..

Eemave File..,

Femowve

> File Mame

iew Source Ctrl+

Delphi Project
Delphi Project
Other Files
C++Builder Pr Qptions..
Unit Test

Delphi Projects | Multi-Device Projects

File Name

C++Builder Projects
L9 Insert Maodified Code | Histar, -

o oRuildar Draiaste | Multi.Navica Draiaste

Right-click on the Visuino.MyVisuinoPackage, and select “View Source”.

o

= e n [n [Sap o s |

18 PASCAL MAGAZINE

ARDUINO: THE
CREATE YOUR

Add the following packages in the
“requires” section:

requires
rtl,
vel,
OpenWirePkgDXES,
Mitov_Runtime DXES8,
OpenWireBindingPkgDXES8,
SignallabBasicPkgDXES,
CommunicationLabBasicPkgDXES8,
Embedded.Arduino.Basic.DXES8;

Do the same for the Visuino.MyVisuinoPackage.Design,
however this time add to the “requires” section:

requires
rtl,
vel,
OpenWirePkgDXES,
Mitov_Runtime DXES,
OpenWireBindingPkgDXES8,
SignallabBasicPkgDXES8,
CommunicationlLabBasicPkgDXES,
Mitov.Embedded.Arduino.Basic.DXES8,
Visuino.MyVisuinoPackage;

Now that you have your packages ready, you can start
working on your component. You will add component
almost identical to the one in the included example, so
you can also copy and paste some of the code from
there.

Add new unit to the Visuino.MyVisuinoPackage:

File Name

B

Issue Nr 5 2015 BLAISE PASCAL MAGAZINE

Delphi Proje
Delphi Proje

Other Files

C++Builder t Djptions

Unit Test

-

dsuino MyisuinoPackage

Delphi Projects | Multi-Device Projects

C++Builder Projects

e oRuildar Draiaste | Al

.

P

iimm Drmimmbe

19

ARDUINO: THE
CREATE YOUR

Save the new unit as Visuino.MyComponent.
In the unit add:

unit Visuino.MyComponent;
interface

uses
System.Classes,Mitov.Design.Components,
Mitov.Arduino.Types;

type
TVisuinoMyComponent =
class(TArduinoCommonAnalogFilter)
end;

procedure RegisterPkg() ;
implementation

procedure RegisterPkg() ;
begin
RegisterComponents (
[
TVisuinoMyComponent
]
)

WL Ly M T L

|F TUIL

b

20

GE - 9/16 = &

o

Add a unit to the
Visuino.MyVisuinoPackage.Design,
and save it as Visuino.MyPackage.Register. In
this unit add:

unit Visuino.MyPackage.Register;
interface

procedure Register() ;
implementation

uses Visuino.MyComponent;

Erogedure Register() ;
egin i

dlsulno.MyComponent.ReglsterPkg();
end;

end.

When Visuino loads the
Visuino.MyVisuinoPackage.Design
package it will call the Register() method.

The Register method will call
Visuino.MyComponent.RegisterPkg() ;

RegisterPkg () ; will call the
RegisterComponents, and will pass array of
components to be registered in the Visuino
toolbar. If you install the packages in Visuino and
run it. You will see that our new component is
available:

G T T

Issue Nr 5 2015 BLAISE PASCAL MAGAZINE

ARDUINO: THE AGE 10/16 V
CREATE YOUR (

The component however is not registered in any To add the desired user friendly names,

categories, does not have image, and does not add Mitov.Attributes to the uses, and

have user friendly name. Lets start fixing this. [CreateName ('MyVisuinoComponent')],

AddMitov.Arduino.Categories.Basic and

to the uses clause, and [Category([Name (
TArduinoMathFilterToolbarCategory)])]

attribute to the component: attributes to the component:

System.Classes, Mitov.Design.Components,

Mitov.Arduino.Types,

Mitov.Arduino.Categories.Basic,
Mitov.Attributes;

'My First Visuino Component'

uses
System.Classes, Mitov.Design.Components,
Mitov.Arduino.Types,
Mitov.Arduino.Categories.Basic;

type
[Category (TArduinoMathFilterToolbarCategory)]
[CreateName ('MyVisuinoComponent')]
[Name ('My First Visuino Component')]
TVisuinoMyComponent =
class(TArduinoCommonAnalogFilter)
end;

type
[Category (TArduinoMathFilterToolbarCategory)]

TVisuinoMyComponent =
class(TArduinoCommonAnalogFilter)
end;

This will place the component in the

Arduino/Filters/Math subcategory,

and the associated alternative categories. You can also add image for the component.
To do that, you need to create an empty
Visuino.MyComponent.res resource file, and add
32x32 pixels PNG image as resource named
“TVISUINOMYCOMPONENT” - upper case of our
component name as declared in the code. I usually
use Visual Studio to create and edit the resource
files, but you can use any other resource editor.

suinoMyComponentres™ - Microsoft Visual 5 J - B X
;'3FJ.:3“'33'5': =3 Bitmap Mode [Bitmzpfes -
B Misc
"

Issue Nr 5 201 21

ARDUINO: THE
CREATE YOUR C

You can also open and explore the
“Visuino.QuadraticFunctionExample.res”
included in the SDK example.

To use the resource in the component, add:

unit Visuino.MyComponent;

{$R *.res}

tothe Visuino.MyComponent.pas file.
Now if you rebuild, and deploy the package and
run Visuino, you will see that the

component has the new names and image,

and appears in the right categories:

[©70]

This is just the code to have an empty header file
that has define preventing it from being included
multiple times, and includes the Mitov.h header
file that contains the Visuino base classes.

Next you will create a namespace where you can
put our component. This step is not really
required, but is highly recommended to avoid
conflicts of multiple components from multiple
vendors with the same name. Use your own name,
or company name for the namespace, or
something else that is likely to be unique.

AGE 11/16
11, [o)

MY WS L TACA R TR R

I mentioned earlier that each Visuino component
has 2 parts. The Arduino C++ code, and its visual
representation in Visuino. So far you have created
a visual representation of such Arduino
component. Now lets write the C++ code.

Under “Arduino\libraries” create “MyExample”
folder:

”

“My documents\ Arduino\ libraries\ MyExample”.

In this folder create a new .h file
Visuino_MyComponent.h, and open the file to edit
it as example in RAD Studio, Visual Studio,
Notepad or other editor, and write the minimal
code necessary:

#ifndef VISUINO MY COMPONENT h
#idefine VISUINO MY COMPONENT h

#include <Mitov.h>

namespace MyVisuinoComponents

{
}

#endif

In the namespace now you can declare your
component:

namespace MyVisuinoComponents

#ifndef VISUINO MY COMPONENT h
#define _VISUINO MY COMPONENT h

{
#include <Mitov.h>

¥
#tendif

class MyComponent

: public Mitov::CommonEnableFilter

typedef Mitov::CommonEnableFilter inherited;

sue Nr 5 2015 BLAISE PASCAL MAGAZINE

ARDUINO: THE
CREATE YOUR C

Now that you have a rudimentary Visuino
component that you can test, go back to the
Delphi code, and instruct it how to generate code
for the component.

First you need to specify the header file that
needs to be included in the Arduino project when
you use the component. In this case
Visuino_MyComponent.h. You can do this by
adding [ArduinoInclude (
'Visuino_MyComponent')] attribute.
Second you need to specify the namespace and
the name of the C++ component. You can do this
by adding [ArduinoComponent (
'MyVisuinoComponents: :MyComponent'

) 1 attribute:

type

)

[ArduinoComponent (

[ArduinoInclude ('Visuino_ MyComponent')]

[Category(TArduinoMathFilterToolbarCategory)]
'MyVisuinoComponents: :MyComponent')]
'MyVisuinoComponent')]
'My First Visuino Component'

[CreateName (
[Name (

)]

This is enough to generate the proper code for
Arduino, however the MyComponent inherits
fromMitov: :CommonEnableFilter which

contains abstract method virtual void
DoReceive(void *_Data).

You need to implement this method in your C++
code, and this is where our data processing will be
done. For now you can just do nothing with the
data, and send it to the output of the filter without
a change:

class MyComponent :

{
typedef Mitov::CommonEnableFilter inherited;

public Mitov::CommonEnableFilter

protected:
virtual void DoReceive(void * Data)
{
OutputPin.Notify(_Data) ;
}

TVisuinoMyComponent = class(TArduinoCommonAnalogFilter

Dane compiling.

Issue Nr 5 201

Global variables nae 176 bytes [BX) of dynamic memnry, leaving
1,872 bytes for local variables. Maximmm iz 2,048 bytes.

DoReceive receives a pointer to the data,
and it just calls OutputPin.Notify passing
the same pointer to the data to be sent to
the next filter in the chain. If you generate
§ the code, and compile it in
the Arduino IDE, it will
succeed: see figure at left.

Your first component is
done, but it does not do
much.

To be useful it needs to
perform some processing
over the data.

Now you will implement
the same quadratic function
as implemented in the
SDK's example,

but you can easily
implement on your own
any other function you can
think of.

pic]

ARDUINO: THE V
CREATE YOUR O

For the quadratic function you will need 3 properties containing the 3 coefficients A, Band C.
So lets declare them in the C++ code first:

class MyComponent

{

typedef Mitov::CommonEnableFilter inherited;

public:

class MyComponent

{

public:

float A,B,C;

typedef Mitov::CommonEnableFilter inherited;

float A,B,C;

protected:

public:
MyComponent ()
A(1.0),

protected:
virtual void DoReceive(void * Data)

{

{

OutputPin.Notify(Data);

}

{
}

if (Enabled)

{

else

float AValue

B(2.0),

: public Mitov::CommonEnableFilter

Next, you need to initialize them with their default values in the constructor:

: public Mitov::CommonEnableFilter

virtual void DoReceive(void * Data)

Finally you need to implement the proper computation in the DoReceive:

*(float *) Data;
AValue = AValue * AValue * A + AValue * B + C;
OutputPin.Notify (

&AValue) ;

OutputPin.Notify(_Data);

In this case if the component is Enabled it will obtain the floating point value from the _Data pointer,
use it for the calculation, and then send the result trough the OutputPin .

If the component is not Enabled it will just send the data trough the OutputPin without changes.

The C++ code for the component is ready. Now lets add the properties in the Delphi code.

First you need to declare the 3 fields that will hold the properties:

TVisuinoMyComponent = class(TArduinoCommonAnalogFilter)
protected
FA : Single; FB

end;

Single; FC

Next you need to declare the 3 properties, and specify the default values. The Visuino
component framework will initialize the fields automatically with the default values:

PAGE 13/16

C(3.0)

Single;

Issue Nr 5 2015 BLAISE PASCAL MAGAZINE

ARDUINO /16 bLt)

CREATE Y VISUINO

TVisuinoMyComponent = class(TArduinoCommonAnalogFilter)
protected
FA : Single; FB : Single; FC : Single;

published
[DefaultSingle(1.0)] ,
property A : Single read FA write FA; be used. If you deploy the
compiled *.bpl files
[DefaultSingle (. 2.0)1 _ to the “Component
property B : Single read FB write FB; Packages”sub—dh@ctory(ﬁ

Visuino, and run Visuino,

Your component is ready to

[DefaultSingle(3.0)])
property C : Single read FC write FC; you will have the
properties available, and

you can edit them:

; T EOEW
; 02000
00

P WS LR TpOneET L |

In Dut

Enzblzd v T

- | olllc:Hllcllug\:luluclu.ll| LRI T =y]

EON— :- ?jl:3” Qut ? In Ot

h
55
5
i)
&
:
- [}
S |s S o= s =
ot pIn g 05 In B 2

|
[
¢
¢
¢
=

Portt [COM1 | Speed: 9800 w Eormati |Unfermatied Text - b

Issue Nr 5

ARDUINO: THE

CREATE YOUR NO

AGE 15/16 Y

If you compile and upload the Arduino code as described in the previous
articles, and then connect to it with Visuino, you will see the sine wave
deformed by the quadratic function plotted in the scope:

AU Wno

[SineansogGeneratorl] [MyvisuinoCompanenti |

:: ?J‘L:::«- Out Ef %: In Out Ef

C

s

o

|

L

!

:

g
b

:

)

Digits

gita!
gita!
gital
gital

(=]
c
ot In In In In 0

]

Your component is ready, tested and operational.

There are some final improvements that you can do. At the moment the end user of the component can
set any value for the A, B and C parameters. Sometimes you want to limit that range. You can limit the
range of a property by adding the valueRange attribute, as example like this:

[DefaultSingle(3.0)]
[ValueRange (-1000, 1000)]
property C : Single read FC write FC;

You can also add a suggested smaller range that will be used in the Visuino property editor when
showing the in-place track-bar value editor, by using the DesignRange attribute like this:

[DefaultSingle(3.0)]

[DesignRange (-100, 100)]

[ValueRange(-1000, 1000)]

property C : Single read FC write FC;

If you add those attributes, rebuild and deploy the package,
in Visuino the in-place editor will offer only the -100 to 100 range:

sue Nr 5 2015 BLAISE PASCAL MAGAZINE

16/16 bvd.')

VISUINO

ARDUINO:
CREATE YO

0 OUNN U

- i J] _

Digits R Dut

i}
g Iy I

~ rue
My\izuinoCompo_

Arduino eBay Ads:

Any attempt to also enter manually value outside RN TR I RiEIae RLe R It il CR R
the -1000 to 1000 range will fail. and information on Visuino component

If the DesignRange attribute is not present, and development, and I hope you all will have many
ValueRange is present, the track-bar will use the || ESMEUUCELERENMEERUIGRIENRIECL RGN
vValueRange instead. If none of them is present, your own components for it.

the t rack-bar will offer the full range of floating LD WS s WELS artl_cle We WI.” =l el h(.)w
. Sl | you can connect Delphi applications and Arduino
point values.

boards over internet, and how you can make
different Arduino boards talk to each other. You
will be entering the exciting world of “Internet
of Things”!

CONCLUSION
In this article you learned the basics of
creating your own Visuino components. As you
have seen, it is very easy, and can be done by
almost anyone, even with limited programming
knowledge.

The component we demonstrated is very
simple, and yet already very useful. With the
component SDK you can create much more
complex and advanced components, with many
more features. All components included in
Visuino are written using this SDK, and you can
see the power they offer. It is not possible in a
single article to cover all aspects of Visuino
component development, but this is a very
good starting point.

	FPC3:
	Delph to Delphi:
	Pythagoras:
	Fastreport:
	Remote Desktop:
	Barnsten:
	URL:

