
12 Issue Nr 4 2015 BLAISE PASCAL MAGAZINE

In the previous issue you learned how easy it is to
program Arduino with Visuino and how to receive
data from Arduino and visualize it. Acquiring, and
visualizing this data is great, but it is not worth
much, if we can't use it in our Delphi applications.
 So let's fire up Delphi, and see how we can get
that data into our Delphi applications.
As I mentioned in part one, to develop Visuino,
I needed a serial communication component.
To solve the problem, I could have used one of the
existing components such as AsynchronPro or any
other. I actually spent some time reviewing and
testing them, but I got disappointed fairly quickly.
Most are designed so the data processing is done in
the main thread.
 This is an advantage, when they are used for
smaller amounts of data, or speeds, by less
experienced developers. But in case of large data
exchange - if the main thread gets busy rendering
graphical data or any other time consuming GUI
related tasks - the communication will be blocked
with a number of potential issues arising ranging
from processing delay, memory over-usage, all the
way to even potential data loss.
 This led me to develop a new ComPort Serial
component, and as with most components I develop,
I made it OpenWire enabled, so it can directly
connect to other OpenWire components.

ARDUINO: THE VISUINO PROJECT - PART 2
COLLECT DATA AND WORK WITH IT IN DELPHI

BY BOIAN MITOV

The component worked well, and I wrote the
necessary code to receive data from it, and
properly populate a TMemo simulating a serial

terminal.
While doing this and debugging the
communication, I often needed to create test
Delphi applications. I discovered that, time and
again, I need to write small portions of data
collecting and converting code to populate
TMemos, so this led to the creation of dedicated

terminal component, thus speeding up my
development and debugging significantly.

In the last article I also demonstrated the ability
to collect data from multiple sensors
simultaneously, and send it to Visuino for
visualization.
 To achieve this, I needed to develop Data
Packaging Arduino component, and its Delphi
unpackaging counterpart. It was only natural to
create the corresponding Package component in
Delphi and Un-Package component in Arduino.
This now allowed bidirectional packaged
multichannel communication.
 The ComPort, the Terminal, the Package

and the UnPackage components formed the basis
of a new upcoming library CommunicationLab.
At present we are working to expand it with
more components, and we are planning a Beta
release soon. Here we will use the new
components to demonstrate how easy it is to
communicate with Arduino.
It is an old tradition to start with a “Hello World!”
program. We will however start with a “Hello

Delphi!” program instead.

Before you start, make sure you have installed
the Arduino IDE from
http://www.arduino.cc , and Visuino

from http://www.visuino.com as shown in

the previous issue.

Visuino will automatically generate all the
necessary Arduino C++ code, and the free open
source Arduino IDE comes with all the necessary
compiler and libraries. You do not need to know
or understand any C++ code in order to program
Arduino. The Visuino will handle all of that under
the hood, as demonstrated in the previous issue.

Start Visuino, and drop a TextValue component:

13Issue Nr 4 2015 BLAISE PASCAL MAGAZINE

Next connect the OutputPin of the TextValue
component to the InputPin of the Arduino Serial:

In the Object Inspector, for the “Value”

property type “Hello Delphi!”:

Click on the “Send to Arduino IDE for Compilation”
 button(or pressing F9):

Visuino will automatically generate the Arduino
C++ code, and will open it in the Arduino IDE,
where you can compile and upload it:

If you have your Arduino board connected, all you
need is to click on the button,
and the code will be
compiled and uploaded.

If you connect to Arduino with Visuino after the
upload, by clicking on the “Connect” button:

and press the reset button on the Arduino board,
you will receive “Hello Delphi!” in the terminal

ARDUINO: THE VISUINO PROJECT - PART 2 PAGE - 2/9
COLLECT DATA AND WORK WITH IT IN DELPHI

614 Issue Nr 4 2015 BLAISE PASCAL MAGAZINE

ARDUINO: THE VISUINO PROJECT - PART 2 PAGE - 3/9
COLLECT DATA AND WORK WITH IT IN DELPHI

Now that we have the Arduino code working, it is
time to see how we can connect to it from Delphi.
Start Delphi.

From the Component Palette, drop
TCLComPort, and TCLTerminal:

In the Object Inspector, select the COM port to which Arduino is connected:

Switch to the OpenWire view, by clicking on the OpenWire tab and connect the OutputPin of the

CLComPort1 to the InputPin of the CLTerminal1:

15Issue Nr 4 2015 BLAISE PASCAL MAGAZINE

ARDUINO: THE VISUINO PROJECT - PART 2 PAGE - 4/9
COLLECT DATA AND WORK WITH IT IN DELPHI

Compile and run the application. If you
press the reset button on the Arduino board,
you will see this message:

The TCLComPort also has OnReceive event

where you can receive and process the data from
your code:

The data arrives in binary form. Since in this case
we know that we are sending text, we can convert
the data to text:
procedure . (TForm1 CLComPort1Receive
 ASender TObject AData: ; :
TArray System Byte< . >);
var StringAText : ;
begin
 := . . (AText TEncoding ASCII GetString AData
);
end;

If you want to receive data from Arduino, we can
connect a data source such as one of the analog
pins, or a Sine Generator. We will use the
generator, as it is the easiest to experiment with.
From the toolbar, drop a Sine Generator, and
connect its output pin, to the input pin of the
Arduino Serial Port:

16 Issue Nr 4 2015 BLAISE PASCAL MAGAZINE

ARDUINO: THE VISUINO PROJECT - PART 2 PAGE - 5/9
COLLECT DATA AND WORK WITH IT IN DELPHI

Press F9 to automatically generate the C++ code
and automatically open the Arduino IDE, then
compile and upload the sketch, as we did earlier.

If you run your Delphi application now, you will
receive the data from Arduino:

Receiving and visualizing data from one
channel is fine, but the data arrived in text
format, and is difficult to use directly for
calculations, and processing.
It also limits us to a single data channel.
In the previous issue, we learned how we can
use the Package component, to receive data from
multiple sensors at the same time.
Here is the project we did:

17Issue Nr 4 2015 BLAISE PASCAL MAGAZINE

Now we will create a Delphi application
that can connect to Arduino, and receive
the data.

Start a new project and drop the
following components from the
component toolbar: TCLComPort,
TCLUnpacket, TSLScope,
TILAngularGauge,

TILThermometer, and two
TILLed.

ARDUINO: THE VISUINO PROJECT - PART 2 PAGE - 6/9
COLLECT DATA AND WORK WITH IT IN DELPHI

Set the COM port as we did earlier in the
previous Delphi project. Then double click on the
CLUnpacket1, then add 2 Binary Float

channels, and 2 Binary Boolean channels:

Close the window.

For the CLUnpacket1, in the Object Inspector,

expand the HeadMarker property, and for the

Bytes, click on the “...” elipsys-button.

The Bytes editor will open. In the editor,
type 5555:

18 Issue Nr 4 2015 BLAISE PASCAL MAGAZINE

ARDUINO: THE VISUINO PROJECT - PART 2 PAGE - 7/9
COLLECT DATA AND WORK WITH IT IN DELPHI

Click OK to close the editor.
Select the Angular Gauge, and set

its Max value to 1, since we expect
the data we receive to be between 0.0,
and 1.0 (The Visuino Analog Inputs,
and Outputs are normalized):

Do the same for the Thermometer. Switch to the
OpenWire View, rearrange the components, and
make the following connections:

Compile and run the application.
You will see the data arriving from Arduino and
displayed in the Scope, the Gauge, the

Thermometer, and the two LED components:

19Issue Nr 4 2015 BLAISE PASCAL MAGAZINE

ARDUINO: THE VISUINO PROJECT - PART 2 PAGE - 8/9
COLLECT DATA AND WORK WITH IT IN DELPHI

You can connect the component to one of the
Analog Floating Point channels:

The SLGenericRealValue1 has

OnProcessData event, where we can write our code:

As example we can assign the value to the position
of a Progress Bar:

There are similar components available for
Boolean and other data types as well.

You have learned for you can create Arduino
code, that collects and send data, and how to
create Delphi application that receives and
processes that data over serial channel.
In the following issues we will show you how
you can do the same over the network, and how
you can have multiple Arduino devices talk to
each other and to Delphi.

In short we will introduce you
to the Internet Of Things with Delphi
and Visuino.

We already know how to visualize the data easily in
Delphi. Often however we need to work with the data
inside our code. To get the Analog data in the code,
add a TSLGenericRealValue component:

procedure . (TForm1 SLGenericRealValue1ProcessData

 Sender TObject InValue Real: ; : ;
var : ; OutValue Real

var :);SendOutputData Boolean
begin
 . := (*);ProgressBar1 Position Round InValue 100

end;

20 Issue Nr 4 2015 BLAISE PASCAL MAGAZINE

ARDUINO: THE VISUINO PROJECT - PART 2 PAGE - 9/9
COLLECT DATA AND WORK WITH IT IN DELPHI

	barnsten:
	Components:
	Raize:
	URL:
	VISUINO:
	Daniele:
	C4D:
	Mapping:
	Bruno:
	Thales:
	Quantum:

