
Delphi

expertstarter

The Arduino board: a guide to quickly
get you started using Delphi …
or: How a new product comes into
being.
How to quickly and efficiently start
using Arduino, and connect to it from
Delphi, and how a new product is born.

It took me hours to put even fairly simple code
together - reading from one sensor, and controlling
a motor. Hardly impressive achievement.
To become the master of the world with my
Arduino, I would need a better approach.
Since obviously, nobody else had solved the
problem I was facing, I decided to do it myself,
and got down to work. Here is what my goal was:

1. In order a development tool to be attractive to
 inexperienced developers it must be very easy
 to use. It had to be easy enough for a kid to
 learn it, and it should not require you to learn
 programming language or programming
 techniques. In short, it should be intuitive
 visual design tool.

2. In order for it to be attractive to experienced
 and expert developers, it must produce
 compact, and highly efficient, scalable code.

3. Since Arduino didn't have an operating
 system, it must allow components to be
 designed as a collaborative plug-in framework,
 so they can work together, and not interfere
 with each other. In essence a small
 rudimentary, component oriented OS core
 was needed.

Fortunately for me, I was already experienced in
developing high performance component
frameworks for Delphi, C++ Builder, and .NET, as
well as haaving a solid hardware background.

I also had a ready graphical development IDE for
Windows called OpenWire Studio. OpenWire Studio is
a very flexible and open architecture Graphical
IDE, and can easily be adapted to program almost
anything.
At least in theory, now here was the chance for it
to prove that it is up to the task solving my little
Arduino problem.
I started with the most difficult of the problems.
Writing a component framework and very
rudimentary scheduling functionality. For this I
used a very rudimentary lightweight flavor of the
good old OpenWire, implemented in C++.
Next I created few Delphi components and using
the new Mitov.Runtime RTTI started to generate
corresponding C++ code for Arduino from them.
Finally I cloned the OpenWire Studio, and
installed the newly created components in it.
And the first version of Visuino was born. All that
was needed was to add buttons to generate the
Arduino code, and to start the Arduino IDE so I could
compile the code.

Today as Delphi and FPC developers, we feel
masters of our Desktops, Servers, and Mobile
devices, but we lack that mastery once we are
outside this digital world. Whenever we need to
control some other equipment, or collect some
interesting data from sensors, we feel that lack of
power, that we have grown to enjoy.

This was the feeling that drove me at the end of the
last year, to buy myself an Arduino board with a
small starter sensors and peripherals kit.

Arduino is an open source hardware platform,
developed initially primarily by Massimo Banzi,
David Cuartielles, Tom Igoe, Gianluca Martino and
David Mellis. The Arduino team/teams also
manufacture and sell Arduino boards, however since
the platform is Open Source, there is a huge
number of other manufacturers of Arduino

compatible boards ranging in prices from ~$1 to
~$100, and with huge range of sizes, some smaller
than a quarter, and a huge range of capabilities,
from few digital and analog pins, all the way to
WI/FI, and GSP enabled boards, with high number
of digital, and analog pins.

This great diversity, in capabilities, sizes, and
prices, makes Arduino a very attractive development
platform, for almost any project that requires
monitoring, interfacing or controlling the world
outside our comfortable Delphi/FPC controlled
boxes, or at least that is what I thought...

I received my Arduino KIT, anxiously unpacked it,
and hooked it to my system.
So far so good, it started to blink.
Then I started digging the web to learn how to
program it, and my fantasy to control the world
with it came crashing down on me. The Arduino

boards are usually programmed using a very
simple to use but extremely rudimentary IDE called
Arduino IDE, in C/C++, with very low level code,
that requires fairly deep hardware, and firmware
knowledge to do even relatively simple tasks.

ARDUINO: THE VISUINO PROJECT - PART 1 PAGE 1
BY BOIAN MITOV

37Issue Nr 3 2015 BLAISE PASCAL MAGAZINE

This happened exactly in the middle of the Delphi
Week, celebrating 20 years of Delphi, and so as I
did a brief live interview about my experience with
Delphi over the years, David I and Jim McKeeth,
suggested to show the Visuino as example of what
can be achieved with Delphi.
So it was, that the first people to see the product
live in action (bugs and all), were the Delphi fans
watching the Delphi Live broadcast!
At this point I already had achieved all the goals
I had in mind, when I started the project.
 All I needed was to write more components,
and play with it, but soon I started to discover
more shortcomings. I was able to program my
Arduino with great ease, but my Arduino and my PC
were living in separated worlds.
 I wanted to see on my screen, what my Arduino

was collecting as data, or processing. As a
minimum, I needed a terminal window, so I
created an OpenWire serial port component, and
hooked a terminal window, with the necessary user
interface. I was able to see my data, but it was in
text format. What if I need to see it in a plot?

So using PlotLab, I naturally added a Scope
component and hooked it to the serial port.
The Visuino was shaping very well. Not only could
I program my boards with it, but I could also
monitor and plot the data from one channel.
But what if I need to monitor more channels?
 I still was not satisfied. To send data from
multiple channels, over a single communication
channel, I needed to package the data in some
form of structure, so I designed a package and un-
package components that allow the data to be
packaged and transmitted as a structured packet.
 Now I was able to plot multiple channels easily.
I went even further, allowing Visuino to
automatically configure the scope from the
package format in my Arduino design.
Scope piloting was nice, but sometimes we want to
see the data in Gauges, and LEDs so I decided to
add instrumentation view as well, using the
InstrumentLab component package. My Visuino was
feature complete, I was happy, and I already had
Delphi components developed that allowed me to
easily communicate with the board.

ARDUINO: THE VISUINO PROJECT - PART 1 PAGE 2

Issue Nr 3 2015 BLAISE PASCAL MAGAZINE38

Figure 1

http://www.visuino.com/

The simplest project is a
blinking LED. Drop a

Pulse Generator from

the toolbar.

Connect it to
pin 13 of the Arduino

component.(figure 5)

Now your design is ready, and you can generate
the Arduino code by clicking on the “Send to
Arduino IDE for Compilation” button:

The next logical step was to package and release
them, so other developers can communicate with
Arduino from their Delphi applications.

Now that we are trough with the short Visuino

history, it is time to take a real look at it.
You can download the Visuino Beta by visiting
www.visuino.com .

Before installing make sure you have the latest
version of the Arduino IDE installed.
Currently this is 1.6.4 and is available for
download here :
http://www.arduino.cc/en/Main/Software

.
The Arduino IDE comes with all standard Arduino
libraries that will be needed to compile the code
generated by Visuino.

After installing the Arduino IDE, you can go ahead
with the Visuino installation.
If you have done a default installation of your
Arduino IDE, there will be no need to do any
configuration of Visuino.
Once installed you can start Visuino.

In the center you will have the Visuino's design

area. This is where you will visually design your
project.

On the right of figure 1 (page before) is the
component toolbar where the components are
organized in different categories and sub-
categories.

In the top left corner of figure 1 (page before) is the
overview navigation area, and bellow it is the
property editor.
Below the Design Area is located the Serial
Terminal the Scope and - as we will see later - the
Instruments Panel.

The best place to start learning is to watch the
Visuino video tutorials:
https://www.youtube.com/watch?v=v-
yMtIzgIeU,

and

https://www.youtube.com/watch?v=wKKlhg
KtDoI

The next step is opening the included demo
projects. You can easily access them from the menu
by selecting |File|Open Demo...|

ARDUINO: THE VISUINO PROJECT - PART 1 PAGE 3

39Issue Nr 3 2015 BLAISE PASCAL MAGAZINE

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

 Once you have familiarized
 yourself with the demos, you
can try to create a new project yourself. The design
area always contains an Arduino component.
You can select the Arduino board type by setting the
“BoardType” property or by clicking on the setup
icon of the Arduino component.

Next we can connect a few sensors to the Arduino

pins, and monitor them in Visuino.

Start a new Visuino project, by selecting |File|New|.

Add a “Packet” component to the Design:

And connect its output to the Input of the Serial Port
(The software input for the serial receives data that
will be sent as serial output from the hardware.)

In the property editor expand the HeadMarker
and click on the “...”ellipsis button:

In the Bytes editor type 55 55 . This will be used

to identify the starting point of a package.
You can use any number of bytes, with any values,
but 2 bytes are a good choice, and common values
such as 00 00 should be avoided as they often

appear in data. The component makes sure the
header is properly recognized even if 55 55 is
present in the data, by special encoding.

This will generate the Arduino code, and launch
the Arduino IDE where you can compile and
upload the compiled code into your Arduino board:

You can close the editor by clicking on the OK
button.

Double-click on the Packet1 to open the elements
editor:

ARDUINO: THE VISUINO PROJECT - PART 1 PAGE 4

40

Figure 7

Figure 8

Figure 9

Figure 10

Issue Nr 3 2015 BLAISE PASCAL MAGAZINE

Your design is ready. You can generate, compile,
and upload the code to your Arduino. Now you
can use the Visuino Scope and Instrumentation
Panel to view the data. Select the com port to which
the Arduino is connected, and from the “Format”
drop-down select Packet1: Then click Connect.

With this editor you can add data channels to the
packet. For this example I will add 2 Analog and 2
digital channels.
Now we can connect the packet elements to the
pins where our sensors are connected:

ARDUINO: THE VISUINO PROJECT - PART 1 PAGE 5

41Issue Nr 3 2015 BLAISE PASCAL MAGAZINE

Figure 11

Figure 12

And the same data can be seen
in the Instrument Panel:

In the scope you can see the data arriving from the
sensors: see figure above

You have seen how you can receive
and visualize data from sensors in the
Visuino. In the next issue you will
learn how to receive data from
Arduino into your Delphi applications.

ARDUINO: THE VISUINO PROJECT - PART 1 PAGE 6

Issue Nr 3 2015 BLAISE PASCAL MAGAZINE42

Figure 13

Figure 14

	SAFE APPS:
	WATERCLOCK:
	NEW LAZARUS:
	PASSWORD:
	TURING:
	LAZARUS GOOGLE:
	VISUINO:
	KBMMW:
	barnsten:
	betteroffice:
	Components:
	Daniele:
	Raize:
	URL:

